

Final Project Checkpoint
Due Nov 18, 2019

15-418 f19

Amy Lee & Jan Orlowski
(alee3 & jorlowsk)

Group Partners: Amy Lee (alee3) & Jan Orlowski (jorlowsk)

Final Project Checkpoint
Make sure your project schedule on your main project page is up to date with work
completed so far, and well as with a revised plan of work for the coming weeks. As by this time
you should have a good understanding of what is required to complete your project,I want to see a
very detailed schedule for the coming weeks. I suggest breaking time down into half-week
increments. Each increment should have at least one task, and for each task put a person’s name
on it.

● One to two paragraphs, summarize the work that you have completed so far. (This should
be easy if you have been maintaining this information on your project page.)

● Describe how you are doing with respect to the goals and deliverables stated in
your proposal. Do you still believe you will be able to produce all your deliverables? If
not,why? What about the ”nice to haves”? In your checkpoint writeup we want a new list
of goals that you plan to hit for the poster session.

● What do you plan to show at the poster session? Will it be a demo? Will it be a graph?
● Do you have preliminary results at this time? If so, it would be great to include them in

your checkpoint write-up.
● List the issues that concern you the most. Are there any remaining unknowns (things you

simply don’t know how to solve, or resource you don’t know how to get) or is it just a
matter of coding and doing the work? If you do not wish to put this information on a
public web site you are welcome to email the staff directly.

● Meet with the course staff to discuss your progress

Summary
The first step was to gain an understanding of the implementation of the algorithm to analyze the
performance and identify bottlenecks upon which to focus our efforts. After reading through the
C++ code we identified the following functions that would take up most of the execution time and
have potential for parallelization:

- observe: The purpose of this function is to determine the current state and entropy of the
grid. It makes a call to find_lowest_entropy(..), which iterates over every cell in the
grid to find the cell with the smallest entropy. It also sums up the entropies from all of the
cells in order to check whether the total entropy is 0, indicating an “impossible” state. The
observe operation is also performed during every iteration of the algorithm, which means
it is called quite often.

- OverlappingModel::propagate(..): The purpose of this function is to propagate
changes throughout the grid. It currently loops over every cell and every pattern to
propagate changes from changed cells to neighboring unchanged cells. This function is also

1

Final Project Checkpoint
Due Nov 18, 2019

15-418 f19

Amy Lee & Jan Orlowski
(alee3 & jorlowsk)

repeated as long as there are any unpropagated changes. There are 5 nested for loops here,
which has potential for parallelization.

We timed both of these functions using a high resolution clock from the <chrono> library. We
found that these two functions take up most of the execution time, with propagation taking the
longest to execute. We decided that our first goal would be to parallelize the propagation step.

After reading through the propagation step, we agreed on 3 possible avenues of parallelizing
propagation:

- GPU with CUDA: If we propagate over the entire grid every time, we can try propagating
by assigning each thread in the kernel in the GPU a single cell in the grid, or by dividing
the grid into smaller chunks assigned to each thread.

- CPU multi-core V1: If we divide the cells into batches of rows, we can assign each set of
rows to a thread and therefore do each set of rows in parallel.

- CPU multi-core V2: We can rely on the fact that when a cell changes to have less
possibilities, the only cells that are affected are its neighbors. Therefore, we could start at
the changed cell and then keep track of cells that could be propagated to with a lock-free
queue that each thread grabs from and adds new potential cells to.

Our second step was to establish test cases, we looked at the existing examples (i.e. tile sets with
constraints) and picked the ones that a varied number of constraints (e.g. ones with no constraints,
some constraints or a very large number of constraints) and then for each tileset had it create
images of varying size. Unfortunately, some tilesets with very strong constraints fail very often
and cannot create large images reliably.

Preliminary Results
- We were able to double the execution speed of the algorithm by using simple OpenMP loop

parallelism in the propagation step.

Issues
- Some sets of constraints that we consider interesting test cases are unable to reliably

generate images past a certain size, as the algorithm keeps running into contradictions too
many times (and the program fails after a number of tries).

- We identified several more functions with parallelization potential, but some of them may
be difficult to parallelize because they update data structures (such as vectors) that do not
support parallel threads operating on it at the same time.

- We may also need to clean up and re-read the base code again, as there are some variables
and processes that remain a little unclear.

2

Final Project Checkpoint
Due Nov 18, 2019

15-418 f19

Amy Lee & Jan Orlowski
(alee3 & jorlowsk)

Updated Goals & Deliverables
We still plan to produce results for each of the three approaches for parallelization listed above.
For each approach, we will have a graph that shows the speedup of the algorithm and how it
changes with problem size. We will also include the large images generated by the parallel
algorithm as examples. We will do all of these in 2D, as I do not think we have time to do
anything related to a 3D grid, unless we end up having a lot of spare time.

On a more detailed level, some other parts of the code we may try to parallelize include:

● find_lowest_entropy(..): instead of sequentially iterating over / summing over all the
cells in the array, we may want to parallelize this step using reduction.

● OverlappingModel::graphics(..): this is another function that sequentially iterates
over the grid to compute a sum of entropies(?) for each pixel in a cell. We may also want to
parallelize this step using reduction. However, it also updates a vector data structure
during each iteration, so it may not be possible to parallelize this step.

● image_from_graphics(..): this function sequentially iterates over pixels in the grid to
set the pixel colors. Each pixel is independently updated, so we may want to parallelize this
step.

Updated Schedule
Date Goal Description

Nov 8 Research + Literature Review Read the code and look into descriptions of
the algorithms to make sure we fully
understand what the algorithm is doing on
an implementation level

Nov 11 Code Analysis Time code to find where to focus
parallelization efforts

Nov 16 Initial simple propagation
parallelization attempts (OpenMP)

Use basic OpenMP pragmas to see if we can
speed up propagation

Nov 18 Checkpoint Formal progress report

Nov 21 Develop grid correctness checker
(Jan & Amy)

Write code that will ensure our parallel
solution did not finish with an invalid
solution that violates constraints (currently
we check results by eye which is not ideal)

Nov 25 Finish Multi-Core CPU
propagation parallelization

We will look to see if we can get any
speedup past using OpenMP primitives. If

3

Final Project Checkpoint
Due Nov 18, 2019

15-418 f19

Amy Lee & Jan Orlowski
(alee3 & jorlowsk)

approach V1 and record results
(Jan)

not, We’ll see how far we can get with using
OpenMP primitives to their full potential.

Nov 29 Finish GPU propagation
parallelization approach and
record results (Amy)

Using CUDA, we should be able to
dramatically boost the propagation step by
propagating form each cell at the same time.

Dec 2 Finish Multi-Core CPU
propagation parallelization
approach V2 and record results
(Jan)

We’re hoping that a lock-free queue will be
comparably fast to accessing cells and we
will be able to use the queue to distribute
work between threads in a manner that does
not require us to scan the entire grid of cells
and gives each thread the same amount of
work.

Dec 5 Attempt parallelization of cell
observation + any other
approaches that come to mind
after (Jan & Amy)

We will try to use the techniques that speed
up propagation to improve the observation
step as well as any other small parts of the
code. If we get any new ideas on how to
parallelize the algorithm, we will do them up
to this point.

Dec 8 Finish timing all of the different
attempts and compile the final
results (Jan & Amy)

After all versions are complete, we will time
them all and create all of the graphs that
show our speedu as well as compile example
generated images.

Dec 9 Final Report

Dec 10 Presentation

4

