

Final Project Proposal
Due Oct 30, 2019

15-418 f19

Amy Lee & Jan Orlowski
(alee3 & jorlowsk)

Group Partners: Amy Lee (alee3) & Jan Orlowski (jorlowsk)

Parallel Wave Function Collapse
Team: Jan Orlowski (jorlowsk) and Amy Lee (alee3)

Website link: https://amylh.github.io/WaveCollapseGen/

Summary
We are going to parallelize a procedural image generation algorithm called Wave Function
Collapse. We aim to implement the parallelization using a multi-core CPU platform and potentially
using CUDA on GPUs.

Background
Wave Function Collapse is an algorithm for generating large bitmap images that are locally
similar to a small reference bitmap image. The bitmaps are NxN locally similar if each NxN
pattern of pixels occurring in the output occurs at least once in the input, possibly rotated or
flipped. Below is an example of the Wave Function Collapse algorithm’s output:

Diagram that shows mapping between local output and input patterns:

1

https://amylh.github.io/WaveCollapseGen/

Final Project Proposal
Due Oct 30, 2019

15-418 f19

Amy Lee & Jan Orlowski
(alee3 & jorlowsk)

(Images taken from https://github.com/mxgmn/WaveFunctionCollapse)

The algorithm can also be extended to work in multiple dimensions and work with additional
constraints.

Below is a high-level description of the (sequential) algorithm, adapted from the writeup at
https://github.com/mxgmn/WaveFunctionCollapse:

1. Read the input bitmap. Identify and count NxN patterns.
1. For simplicity, we may format the input as a discrete set of NxN pattern patches.

2. Create an array called wave with the dimensions of the output. Each element of wave
represents the state of an NxN region, or “cell”, in the output. The state of a cell encodes
boolean coefficients that store information about which NxN patterns are forbidden
(false) or not yet forbidden (true) for that cell. For each cell, we want to “collapse” the
list of possible patterns until only 1 possibility is left. In the final output, the cell will be
assigned that 1 pattern.

3. Initialize wave in the pristine state, i.e. with all the boolean coefficients being true for
every cell.

4. Repeat until all cells have 1 possibility:
1. Pick cell(s) randomly (or using a heuristic) and randomly set one of its patterns

to true.
2. Reduce the possibilities of its neighboring cell depending on their compatibility

with its pattern. These compatibilities are defined in the input.
5. By now all the cell must be either in a completely observed state (all the coefficients

except one being zero) or in the contradictory state (all the coefficients being zero). In
the first case return the output. In the second case we exit without returning anything.

We believe step 4.1 may be parallelized, i.e. we choose multiple starting cells to propagate updates
in parallel. And we believe step 4.2 may be parallelized, i.e. we update neighbors in parallel.

Challenges
For large images (and even more so for higher dimensional grids), it can take a long time to
generate the output due to the large amount of cells in the image. But there are several challenges
in parallelizing the algorithm to make it faster:

● Cell Neighbor Dependencies: Whenever a cell is collapsed, all of its neighbors must also
be updated. This may lead to contention if two neighbors are both collapsed in parallel.

● Square-in-Square Access: When we access a cell, we also access all the pixels in it. We
have to be careful to arrange the pixels in memory in a way that does not lead to false
sharing.

2

https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/mxgmn/WaveFunctionCollapse

Final Project Proposal
Due Oct 30, 2019

15-418 f19

Amy Lee & Jan Orlowski
(alee3 & jorlowsk)

● Non-uniform Access Patterns: Since starting cells and patterns are chosen randomly, and

the propagation of updates may occur in random directions, the array accesses will also be
random and could lead to bad caching behavior. However, we believe there may be some
degree of locality since updates are propagated through neighbors.

● Contradictions: In the event that we run into a contradiction while generating an image
(i.e. a cell cannot be collapsed in any way without violating a constraint/local similarity),
we need a way to stop execution of all cores and backtrack/reset the generation process
fast.

Resources
We will use the write up by Maxim Gumin at https://github.com/mxgmn/WaveFunctionCollapse
to understand the algorithm on a theoretical level. We have also found multiple sequential C++
implementations of the Wave Function Collapse algorithm by:

● Emil Ernerfeld – https://github.com/emilk/wfc
● Mathieu Fehr and Nathanaël Courant – https://github.com/math-fehr/fast-wfc

We will use these sequential implementations as a starting point for our parallel code and as
benchmarks for measuring our parallel speedup.

We may also reference a 2009 paper by Paul C. Merrell, which was the basis for Gumin’s
algorithm, at http://graphics.stanford.edu/~pmerrell/thesis.pdf.

Goals & Deliverables

Plan to Achieve
● Parallel WFC (multi-core CPU) for 2D bitmap images

Hope to Achieve
● Parallel WFC (CUDA on GPU) for 2D bitmap images
● Parallel WFC (multi-core CPU) for 3D grids
● Parallel WFC (CUDA on GPU) for 3D grids

Planned Demo
For the poster session demo, we hope to show:

● Side-by-side comparisons of the sequential WFC algorithm and our parallel WFC
implementations, working on images of various patterns and sizes in real time.

3

https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/emilk/wfc
https://github.com/math-fehr/fast-wfc
http://graphics.stanford.edu/~pmerrell/thesis.pdf

Final Project Proposal
Due Oct 30, 2019

15-418 f19

Amy Lee & Jan Orlowski
(alee3 & jorlowsk)

● Graphs displaying the relative speedup of our implementations for different numbers of

cores, input sizes, and output sizes.

Platform Choice
First, we plan to parallelize the WFC algorithm in C++ using multi-core CPU code. We are
using C++ because much of the starter code we plan to use is written in C++, and the language
is relatively fast and familiar to us. We also believe using multi-core CPU is suitable because
active, non-adjacent cells can perform work independently on separate cores.

We also hope to parallelize the WFC with CUDA on a GPU. We believe this may be effective in
improving locality and caching behavior for adjacent cells that are performing work in parallel,
since CUDA has features that take advantage of blocking parallel threads.

Schedule
Date Goal Description

Nov 2 Research + Literature Review Get familiar with the algorithm and the
sequential implementations described above.

Nov 8 (2D) Tackle Non-uniform
Access Patterns

Improve locality / caching for cell / neighbor
accesses, using multi-core CPU

Nov 14 (2D) Tackle Cell Neighbor
Dependencies

Handle contention between dependent cells,
using multi-core CPU

Nov 18 Checkpoint Formal progress report

Nov 24 (2D) Tackle Non-uniform
Access Patterns

Improve locality / caching for cell / neighbor
accesses, using CUDA

Nov 30 (2D) Tackle Cell Neighbor
Dependencies

Handle contention between dependent cells,
using CUDA

Dec 9 Final Report Clean up code, finalize tuning parameters,
prepare poster

Dec 10 Presentation Present!

4

