
 
Final Project Report 
Due Dec 9, 2019 

 
15-418 f19 

Amy Lee & Jan Orlowski
(alee3 & jorlowsk) 

 
Group Partners: Amy Lee (alee3) & Jan Orlowski (jorlowsk) 

Parallel Wave Function Collapse 

Summary 
We accelerated a procedural image generation algorithm called Wave Function Collapse by 
introducing parallelism. To do so, we experimented with different CPU parallelization methods, 
such as using OpenMP or pthreads and different algorithms, comparing the results of each method 
to determine which was best. We found that we could get 2-4x speedup using openMP and also 
found a less-general sequential algorithm that outperformed all parallel implementations and did 
not parallelize well. 

Background 
Wave Function Collapse is an algorithm for generating large bitmap images that are locally 
similar to a small reference bitmap image. The bitmaps are NxN locally similar if each NxN 
pattern of pixels occurring in the output occurs at least once in the input, possibly rotated or 
flipped. Patterns may be tiled (see Fig. 1) or overlapping (see Fig. 2), and may have constraints 
specifying which types of tiles may be adjacent to other types of tiles. 

 

Fig 1: Mapping between input patterns and tiled output pattern. 

1 



 
Final Project Report 
Due Dec 9, 2019 

 
15-418 f19 

Amy Lee & Jan Orlowski
(alee3 & jorlowsk) 

 

 

Fig 2: Mapping between an input pattern and local, overlapping occurrences in an output pattern. 

The algorithm can also be extended to work in multiple dimensions and work with additional 
constraints. 

Below is a high-level description of the (sequential) algorithm, adapted from the writeup at 
https://github.com/mxgmn/WaveFunctionCollapse: 

1. Read the input bitmap. Identify and count NxN patterns. 
1. For simplicity, we may format the input as a discrete set of NxN pattern patches. 

2. Create an array called wave with the dimensions of the output. Each element of wave 
represents the state of an NxN region, or “cell”, in the output. The state of a cell encodes 
boolean coefficients that store information about which NxN patterns are forbidden 
(false) or not yet forbidden (true) for that cell. For each cell, we want to “collapse” the 
list of possible patterns until only 1 possibility is left. In the final output, the cell will be 
assigned that 1 pattern. 

3. Initialize wave in the pristine state, i.e. with all the boolean coefficients being true for 
every cell. 

4. Repeat until all cells are observed to have 1 possibility: 
1. Observation: Pick cell(s) randomly (or using a heuristic) and randomly set one of 

its patterns to true (i.e. mark all but one possibilities as false and the remaining 
one as true). 

2. Propagation: Reduce the possibilities of its neighboring cells depending on their 
compatibility with its pattern. These compatibilities are constraints defined in 
the input.  

5. By now all the cells must be either in a completely observed state (all the coefficients 
except one being zero) or in the contradictory state (all the coefficients being zero). In 
the first case, we convert each cell to a colored pixel corresponding to its pattern and 
return the output. In the second case we exit without returning anything. 

 
We profiled the original sequential code to identify which step was the most computationally 
intensive. The figure below shows the results of our investigation: 

2 

https://github.com/mxgmn/WaveFunctionCollapse


 
Final Project Report 
Due Dec 9, 2019 

 
15-418 f19 

Amy Lee & Jan Orlowski
(alee3 & jorlowsk) 

 

 
 
Seeing the results, we decided to focus our efforts on parallelizing just the propagation step.  
 
In the C++ implementation, the model keeps track of the currently valid possibilities for tiles as a 
3D array indexed by (x,y,t) where x and y are tile coordinates and t is the id of the possibility.  
Here is how the propagation algorithm is implemented in C++: 
 

Mark the observed tile as changed 
While there is any tile that is still marked as changed: 

- For each tile in the grid: 
- If the tile is marked as changed, check if any of its neighbors have their 

possibilities limited by the change in the tile. For each neighbor that does, 
eliminate those possibilities and mark the neighbor as changed. Unmark the 
current tile. 

 
The reason parallelizing this algorithm is tricky is for the following reasons: 

- Reducing possibilities in a cell affects other cells, which creates a dependency. Luckily, a 
change that collapses possibilities can only collapse more possibilities (can’t increase the 
number of possibilities).  

- The current propagation algorithm requires going over all the cells multiple times. There is 
no fast way of telling the number of times we need to iterate over all cells to have no 
remaining changes. 

3 



 
Final Project Report 
Due Dec 9, 2019 

 
15-418 f19 

Amy Lee & Jan Orlowski
(alee3 & jorlowsk) 

 

Approach 
For simplicity, our project only dealt with the case where output patterns are tiled, rather than 
overlapping. However, the techniques we used could easily be extended to work for both. 

As starter code, we used a sequential C++ implementation of the WFC algorithm by Emil 
Ernerfeldt. For parallelization, we used OpenMP, C++ pthreads, and the boost library. Most of 
the work went into modifying the propagate function to parallelize it, but we also had to modify 
parts of the code for running convenience. 

Multi-core Parallel with OpenMP 
For this approach, we tried to parallelize the propagate function using OpenMP. 

A key observation here is that, when tiles are propagating their states to the next iteration, they 
depend on the current states of their neighbors. However, each tile can check the states of its 
neighbors independently during each round of propagation, which is amenable to parallelization. 

The propagation step can be broken down into several levels of iteration: the program iterates over 
every tile in the image; each tile iterates over its four neighboring tiles to check whether any of 
them changed state; each neighboring tile that changed state then iterates over the set of possible 
patterns to check whether any of them are still possible for the tile. 

First, we parallelized the tile iteration. Initially, we enabled the assignment of one thread to each 
row of tiles in the image, and saw roughly 2-4x speedup compared to the sequential version. 
However, since each tile can check its neighbors independently, we decided to instead allow 
assignment of one thread to every tile in the image. Speedup was still roughly 2-4x, but was 
slightly faster than the row-wise assignment.  

We also theorized that each tile would be responsible for roughly the same amount of work, as 
each tile has a fixed amount of neighbors (between two to four) and patterns to check, so we used 
a static assignment of threads. However, we found that using a dynamic (guided) assignment led 
to slight speedup compared to the static assignment, implying that work variation among tiles may 
actually accumulate after many rounds of propagation and lead to some work imbalance.  

Finally, we considered nesting parallel loops to account for the iterations over neighbors and 
patterns. However, these led to poorer results than using a single parallel loop. 

Multi-core Parallel using Lock-free queues and OpenMP 
For this approach, we continued to parallelize the propagate function using OpenMP. However, 
we introduced further optimization by utilizing work queues. 

4 



 
Final Project Report 
Due Dec 9, 2019 

 
15-418 f19 

Amy Lee & Jan Orlowski
(alee3 & jorlowsk) 

 
A key observation is that, in our case, if a tile changes only its neighbors are affected . So, instead 1

of looping over every single tile to check if any changes need to be propagated, we instead keep a 
queue of tiles that could change. Whenever we process a tile and find that a change occurred, we 
add its neighbors to the queue. We finish once the queue is empty (i.e. we finished propagating). 
This gives us a sequential algorithm, but also a new avenue for parallelization. Using a lock-free 
queue, we can have multiple threads grab tiles from the queue, process them and add new ones 
onto the queue if necessary until the queue is completely empty. Our hope would be that the 
contention from all threads accessing the queue would not slow down the execution too much and 
we will benefit from more threads processing tiles. 

To set up the initial parallel algorithm, we used the boost library’s lock-free queue as the queue 
and also used an std::atomic_int to set up a special barrier. The barrier was added to solve a 
problem: when the queue is empty, it does not necessarily mean a thread’s work is done. It is 
possible that another thread could be processing a tile and will add the tile’s neighbors to the queue 
once finished. So, we should only finish when all threads see that the queue is empty. The 
barrier int is incremented when a thread is working and decremented once when a thread sees 
the queue is empty. If a thread checks on the queue and finds it is not empty, it increments the 
barrier again and keeps working. 

Multi-core Parallel with pthreads 
For this approach, we tried to parallelize the propagate function using pthreads. As opposed to 
OMP threads, where the assignment of threads to data is unknown to us, we theorized that we 
could explicitly assign pthreads to chunks of data in a manner that would take advantage of 
caching. 

Our first approach was to statically interleave the pthreads and their assigned tiles. We then tuned 
the number of pthreads used to determine whether it influenced performance. However, this 
approach does not take advantage of caching, as interleaving the threads scatters the tiles that a 
thread works upon. 

Our second approach was to statically assign the pthreads to blocks of tiles. We theorized that a 
blocked assignment would introduce some work imbalance, but could allow for better caching 
behavior compared to an interleaved assignment. 

Other Approaches 
Besides the approaches listed above, we also attempted to implement parallelization using ISPC 
tasks and CUDA. We were unable to produce working implementations due to incompatibilities in 

1 Note that this assumption only holds for the original wfc algorithm. There are spin-off algorithms that can 
have constraints that can apply from any tile to any tile. We could modify our algorithm to add all tiles that 
potentially could change given a set of all constraints, but that may lead to a less efficient algorithm than the 
one shown here. 

5 



 
Final Project Report 
Due Dec 9, 2019 

 
15-418 f19 

Amy Lee & Jan Orlowski
(alee3 & jorlowsk) 

 
our machine configurations and base code, but believe that further research could yield promising 
results. 

Results 
As stated earlier, we focused our efforts on parallelizing the propagation step, which comprised 
most of the total runtime of the program. However, other steps with potential for parallelization 
include the observation step, which iterates over tiles to determine whether they are all in the 
marked state and the program should stop; and the imaging step, which converts the array of tile 
states to the colored pixels corresponding to the tile. 

We ran each of our above implementations on a large set of sample inputs, where each input 
consisted of a set of image pattern tiles (ranging in size from 8x8 to 32x32 pixels) and a file 
specifying a set of constraints for the image tiles. To determine performance, we measured the 
total amount of time it took for the program to finish on a given input. 

Below, we provide speedup results for a few selected sets of image tiles (called “circles” and 
“rooms”), with varying specifications for output dimensions (in terms of tiles) and tile constraints. 
We chose the “circles” set because it contains multiple tiles with no constraints. The “rooms” set 
also contains multiple tiles but many constraints. We show results for square outputs, but 
confirmed that rectangular outputs worked as well. 

Multi-core Parallel with OpenMP 
Results for this method are as follows: 

 

6 



 
Final Project Report 
Due Dec 9, 2019 

 
15-418 f19 

Amy Lee & Jan Orlowski
(alee3 & jorlowsk) 

 

 

As shown above, OMP parallel loops with guided thread assignment led to roughly 2x speedup for 
the “circles” set and 4x speedup for the “rooms” set compared to the baseline sequential version. 
Based on the graphs, it also seems that the duration of the program remains linear on the size of 
the output for both the baseline and parallel implementations. That is, we do not expect speedup to 
increase as the size of the output increases; However, we do expect the parallel implementation to 
be consistently 2-4x faster than the sequential version. 

We theorize that the speedup is possibly limited by the maximum number of OMP threads that can 
be created and handled by each core at a given time. In addition, since OMP implementations rely 
on a master thread that distributes work among worker threads, there may be increasing overhead 
from distributing tasks that cancels out the time saved by having more threads. 

It is also worth noting that the sequential implementation was faster for the “circles” set than the 
“rooms” set, but the parallel implementation was faster for the “rooms” set than the “circles” set. 
We stated earlier that the “circles” set has no constraints while the “rooms” set has many 
constraints. We theorize that the constraints may increase speed because they reduce the number 
of patterns that must be checked for validity during the propagation step. 

Multi-core Parallel using Lock-free queues and OpenMP 
Results for this method are as follows: 

7 



 
Final Project Report 
Due Dec 9, 2019 

 
15-418 f19 

Amy Lee & Jan Orlowski
(alee3 & jorlowsk) 

 

 

 

In practice, the sequential queue algorithm completely outperforms the parallel queue algorithm. 
Contention is too large and leads to an overall slowdown in the parallel algorithm. We speculate 
contention shows up in the following ways: 

- Threads often push to the queue, so there is time lost waiting to get access to push on the 
queue (even if it’s lock-less, threads can still push on the queue one at a time) 

- The barrier is an atomic int shared across all threads. Incrementing and decrementing the 
int is bound to be costly. 

8 



 
Final Project Report 
Due Dec 9, 2019 

 
15-418 f19 

Amy Lee & Jan Orlowski
(alee3 & jorlowsk) 

 
As an experiment, we removed the barrier to see if we would reduce contention by a noticeable 
amount. This does mean that some threads may finish early, but in the case that all threads but 1 
finish early, we’re just simulating the sequential case, which should give us a speedup. However, 
upon testing, we found that while there is a minimal speedup for most test cases (and a significant 
speedup for the test cases that performed especially badly in parallel), it was still nothing 
compared to the sequential queue algorithm speedup. 

Multi-core Parallel with pthreads 
Results for this method are as follows: 

 

9 



 
Final Project Report 
Due Dec 9, 2019 

 
15-418 f19 

Amy Lee & Jan Orlowski
(alee3 & jorlowsk) 

 

 

 

As shown above, the interleaved method outperformed the blocked method, with 8 pthreads being 
the optimal number of threads for each method. However, the pthread method consistently 
performed worse than the OMP and queue-based methods. 

We believe that the interleaved method yielded better load-balancing than the blocked method; in 
fact, the blocked method failed to generate valid output when 32 pthreads were used. It also seems 
that there was little benefit to be had from caching, as each tile only accesses its neighbors once 
per round of propagation before their states are all updated. In addition, tiles accessing the same 
neighbor are always separated by that neighbor, which may interrupt spatial locality. And since 
the threads are working in parallel, the order of accesses is unknown and would make it 
improbable that a tile’s data would persist in the cache for long. 

10 



 
Final Project Report 
Due Dec 9, 2019 

 
15-418 f19 

Amy Lee & Jan Orlowski
(alee3 & jorlowsk) 

 
It is also worth noting that low pthread counts performed better on small outputs compared to 
high pthread counts: 4 pthreads typically outperformed all other pthread counts for outputs of 
dimensions 20x20 and 40x40. This may be due to the fact that high numbers of threads leads to 
very little work per thread when the output is small, and large overhead in creating the threads 
compared to actually using them for work. The program could benefit from a non-static number of 
threads: generate fewer threads for outputs of smaller dimensions, and more threads for outputs of 
larger dimensions. 

Summary 
A summary of the best results for each method is as follows: 

 

11 



 
Final Project Report 
Due Dec 9, 2019 

 
15-418 f19 

Amy Lee & Jan Orlowski
(alee3 & jorlowsk) 

 

 

Overall it seems that the sequential queue-based algorithm yields the best speedup compared to the 
baseline. Since it utilizes a work queue of updated tiles instead of examining every tile in the 
image, the fact that it outperforms the OMP and pthread implementations is reasonable. The OMP 
and pthread implementations examine tiles that have already been marked with a pattern and are 
thus performing unnecessary work on the order of O(N2) per round of propagation, whereas the 
sequential queue-based algorithm does not. 

It also seems that pthreads perform worse than OMP, likely due to greater load imbalance: the 
pthreads are statically assigned, but the OMP threads are dynamically assigned, and neither 
method seems to draw significant benefit from locality or caching. 

In the future, we would like to further research parallel implementations of the queue-based 
algorithm. 

References 
Gumin, Maxim. 2016, v1, WaveFunctionCollapse. 
https://github.com/mxgmn/WaveFunctionCollapse 

Ernerfeldt, Emil. 2016, v1, Wave Function Collapse in C++. https://github.com/emilk/wfc 

Merrell, Paul C. Model Synthesis. 2009. University of North Carolina at Chapel Hill, PhD 
dissertation. Accessed at http://graphics.stanford.edu/~pmerrell/thesis.pdf 

12 

https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/emilk/wfc
http://graphics.stanford.edu/~pmerrell/thesis.pdf


 
Final Project Report 
Due Dec 9, 2019 

 
15-418 f19 

Amy Lee & Jan Orlowski
(alee3 & jorlowsk) 

 

Work Distribution 
Amy (50%)  Jan (50%) 

● OpenMP implementation 
● pthread implementation 
● (dropped) ISPC / CUDA implementations 
● result compilation & analysis 
● final report & website 

● OpenMP implementation 
● OpenMP queue-based implementation 
● (dropped) CUDA implementation 
● result compilation & analysis 
● final report 

 

13 


